**

- 146046 - -

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الانجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية - خيار أنجليزية	الشعبة أو المسلك

NS22E

GENERAL INSTRUCTIONS

- ✓ The use of non- programmable calculator is allowed;
- ✓ The exercises can be treated in the preferred order by the candidate;
- √ The use of red color when writing solutions is to be avoided.

COMPONENTS OF THE EXAM

✓ The exam consists of three exercises and a problem , independent of each other according to the fields as follows:

Exercise 1	Geometry in space	3 points
Exercise 2	Complex numbers	3 points
Exercise 3	Calculating probabilities	3 points
Problem	Study of numerical function, calculating integrals and numerical sequences	11 points

√ In denotes the Napierian logarithm function

Exercise 1 : (3 points)

In the space referred to an orthonormal direct coordinate system $(O, \vec{i}, \vec{j}, \vec{k})$, we consider the points A(1,-1,-1), B(0,-2,1) and C(1,-2,0)

- 0.75 1)a) Show that $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$
- **0.5** b) Deduce that x+y+z+1=0 is a cartesian equation of the plane (ABC)
- 0.75 2) Let (S) the sphere of equation $x^2+y^2+z^2-4x+2y-2z+1=0$ Show that the center of the sphere (S) is the point $\Omega(2,-1,1)$ and that its radius is $R=\sqrt{5}$
- 0.5 3)a) Calculate $d(\Omega, (ABC))$ the distance of the point Ω to the plane (ABC)
- b) Deduce that the plane (ABC) intersects the sphere (S) along a circle (Γ) (the determination of the center and radius of the circle (Γ) is not required)

Exercise 2 : (3 points)

- 0,75 1) Solve in the set of complex numbers $\mathbb C$ the equation : $z^2-2z+4=0$
 - 2) In the complex plane referred to an orthonormal direct coordinate system $(O,\vec{u}\,,\vec{v})$, we consider the points A , B , C and D of respective affixes $a=1-i\sqrt{3}$, b=2+2i , $c=\sqrt{3}+i$ and $d=-2+2\sqrt{3}$
- 0,5 a) Verify that $a-d=-\sqrt{3}(c-d)$
- 0,25 b) Deduce that the points $\,A\,$, $\,C\,$ and $\,D\,$ are collinear
- 0,5 3) Let z be the affix of a point M in the complex plane and z' the affix of the point M' image of M by the rotation R with center O and angle $-\frac{\pi}{3}$
 - Verify that $z' = \frac{1}{2}az$
 - 4) Let the point H the image of the point B by the rotation R , and h its affix, and P the point of affix p such that p=a-c
- 0,5 a) Verify that h = ip
- 0,5 b) Show that the triangle $O\!H\!P$ is rectangle and isosceles in O.

Exercise 3: (3 points)

An urn contains ten balls : three green balls, six red balls and one black ball. All the balls are indistinguishable to the touch .

We draw randomly and simultaneously three balls from the urn.

فحة	الص
	3
4	1

2

1

1

0.5

NS22E

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 - الموضوع - مادة: الرياضيات - مسلك علوم الحياة والأرض و مسلك العلوم الفيزيانية - خيار أنجليزية

	
We consider the following events:	A: " Get three green balls

B: " Get three balls of the same color"

C: "Get at least two balls of the same color "

1) Show that
$$p(A) = \frac{1}{120}$$
 and $p(B) = \frac{7}{40}$

2) Calculate p(C)

Problem: (11 points)

First part

We consider the numerical function f defined on $]0,+\infty[$ by $f(x)=x+\frac{1}{2}-\ln x+\frac{1}{2}(\ln x)^2]$ and (C) the curve of f in an orthonormal coordinate system (O,\vec{i},\vec{j}) (unit: 1cm)

- 0.5 1) Calculate $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$ and then interpret geometrically the obtained result
- 0.25 2)a) Verify that for every x on $]0,+\infty[$, $f(x)=x+\frac{1}{2}+\left(\frac{1}{2}\ln x-1\right)\ln x$
- **0.5** b) Deduce that $\lim_{x \to +\infty} f(x) = +\infty$
- 0.5 c) Show that for every x on $\left[0, +\infty\right[$, $\frac{(\ln x)^2}{x} = 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2$ and then deduce that $\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$
- d)Show that the curve (C) admits a parabolic branch in the direction of the line (Δ) wich an equation is y=x at $+\infty$
- 0.5 3)a) Show that for every x on $]0,1]:(x-1)+\ln x \le 0$ and for every x on $[1,+\infty[:(x-1)+\ln x \ge 0$
 - b)Show that for every x on $]0,+\infty[$, $f'(x)=\frac{x-1+\ln x}{x}$
- 0.5 c) Set up the table of variations of the function f
- 0.5 4)a)Show that $f''(x) = \frac{2 \ln x}{x^2}$ for every x on $]0, +\infty[$
 - b) Deduce that the $\operatorname{curve}(C)$ admits an inflection point wich coordinates will be determined

الصفحة	
4	ı
1	

NS22E

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 - الموضوع - مادة: الرياضيات - مسلك علوم الحياة والأرض و مسلك العلوم الفيزيائية - خيار أنجليزية

0.5	5) a) Show that for every x on $]0, +\infty[$, $f(x) - x = \frac{1}{2}(\ln x - 1)^2$,	
	and then deduce the relative position of the line $ig(\Deltaig)$ and the curve $ig(Cig)$	
1	b) Sketch the line (Δ) and the curve (C) in the same system coordinate $\left(O, \vec{i}, \vec{j} ight)$	
0.5	6) a) Show that the function $H: x \mapsto x \ln x - x$ is a primitive of the function $h: x \mapsto \ln x$ on $]0, +\infty[$	
0.75	b) Using an integration by parts, show that $\int_{1}^{e} (\ln x)^{2} dx = e - 2$	
0.5	c) Calculate, in cm^2 , the area enclosed between the curve (C) , the line (Δ) , and the lines	
	of equations $x=1$ and $x=e$	
	Second part:	
	Let (u_n) be the numerical sequence defined by $u_0=1$ and $u_{n+1}=f(u_n)$ for every natural number n	
0.5	1) a) Show by induction that $1 \le u_n \le e$ for every natural number n	
0.5	b) Show that the sequence $\left(u_{n}\right)$ is increasing	
0.5	c) Deduce that the sequence (u_n) is convergent.	
0.75	2) Calculate the limit of the numerical sequence (u_n) .	